Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Origin and evolution of genes related to ABA metabolism and its signaling pathways.

Identifieur interne : 002D70 ( Main/Exploration ); précédent : 002D69; suivant : 002D71

Origin and evolution of genes related to ABA metabolism and its signaling pathways.

Auteurs : Kousuke Hanada [Japon] ; Takeshi Hase ; Tetsuro Toyoda ; Kazuo Shinozaki ; Masanori Okamoto

Source :

RBID : pubmed:21626211

Descripteurs français

English descriptors

Abstract

Since plants cannot move to avoid stress, they have sophisticated acclimation mechanisms against a variety of abiotic stresses. The phytohormone abscisic acid (ABA) plays essential roles in abiotic stress tolerances in land plants. Therefore, it is interesting to address the evolutionary origins of ABA metabolism and its signaling pathways in land plants. Here, we focused on 48 ABA-related Arabidopsis thaliana genes with 11 protein functions, and generated 11 orthologous clusters of ABA-related genes from A. thaliana, Arabidopsis lyrata, Populus trichocarpa, Oryza sativa, Selaginella moellendorffii, and Physcomitrella patens. Phylogenetic analyses suggested that the common ancestor of these six species possessed most of the key protein functions of ABA-related genes. In two species (A. thaliana and O. sativa), duplicate genes related to ABA signaling pathways contribute to the expression variation in different organs or stress responses. In particular, there is significant expansion of gene families related to ABA in evolutionary periods associated with morphological divergence. Taken together, these results suggest that expansion of the gene families related to ABA signaling pathways may have contributed to the sophisticated stress tolerance mechanisms of higher land plants.

DOI: 10.1007/s10265-011-0431-0
PubMed: 21626211


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Origin and evolution of genes related to ABA metabolism and its signaling pathways.</title>
<author>
<name sortKey="Hanada, Kousuke" sort="Hanada, Kousuke" uniqKey="Hanada K" first="Kousuke" last="Hanada">Kousuke Hanada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Gene Discovery Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. kohanada@psc.riken.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Gene Discovery Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045</wicri:regionArea>
<wicri:noRegion>Kanagawa 230-0045</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hase, Takeshi" sort="Hase, Takeshi" uniqKey="Hase T" first="Takeshi" last="Hase">Takeshi Hase</name>
</author>
<author>
<name sortKey="Toyoda, Tetsuro" sort="Toyoda, Tetsuro" uniqKey="Toyoda T" first="Tetsuro" last="Toyoda">Tetsuro Toyoda</name>
</author>
<author>
<name sortKey="Shinozaki, Kazuo" sort="Shinozaki, Kazuo" uniqKey="Shinozaki K" first="Kazuo" last="Shinozaki">Kazuo Shinozaki</name>
</author>
<author>
<name sortKey="Okamoto, Masanori" sort="Okamoto, Masanori" uniqKey="Okamoto M" first="Masanori" last="Okamoto">Masanori Okamoto</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21626211</idno>
<idno type="pmid">21626211</idno>
<idno type="doi">10.1007/s10265-011-0431-0</idno>
<idno type="wicri:Area/Main/Corpus">002D94</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002D94</idno>
<idno type="wicri:Area/Main/Curation">002D94</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002D94</idno>
<idno type="wicri:Area/Main/Exploration">002D94</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Origin and evolution of genes related to ABA metabolism and its signaling pathways.</title>
<author>
<name sortKey="Hanada, Kousuke" sort="Hanada, Kousuke" uniqKey="Hanada K" first="Kousuke" last="Hanada">Kousuke Hanada</name>
<affiliation wicri:level="1">
<nlm:affiliation>Gene Discovery Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. kohanada@psc.riken.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Gene Discovery Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045</wicri:regionArea>
<wicri:noRegion>Kanagawa 230-0045</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hase, Takeshi" sort="Hase, Takeshi" uniqKey="Hase T" first="Takeshi" last="Hase">Takeshi Hase</name>
</author>
<author>
<name sortKey="Toyoda, Tetsuro" sort="Toyoda, Tetsuro" uniqKey="Toyoda T" first="Tetsuro" last="Toyoda">Tetsuro Toyoda</name>
</author>
<author>
<name sortKey="Shinozaki, Kazuo" sort="Shinozaki, Kazuo" uniqKey="Shinozaki K" first="Kazuo" last="Shinozaki">Kazuo Shinozaki</name>
</author>
<author>
<name sortKey="Okamoto, Masanori" sort="Okamoto, Masanori" uniqKey="Okamoto M" first="Masanori" last="Okamoto">Masanori Okamoto</name>
</author>
</analytic>
<series>
<title level="j">Journal of plant research</title>
<idno type="eISSN">1618-0860</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (genetics)</term>
<term>Abscisic Acid (metabolism)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis (physiology)</term>
<term>Bryopsida (genetics)</term>
<term>Bryopsida (metabolism)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Duplicate (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Microarray Analysis (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Oryza (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Growth Regulators (genetics)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Selaginellaceae (genetics)</term>
<term>Selaginellaceae (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide abscissique (génétique)</term>
<term>Acide abscissique (métabolisme)</term>
<term>Analyse sur microréseau (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Arabidopsis (physiologie)</term>
<term>Bryopsida (génétique)</term>
<term>Bryopsida (métabolisme)</term>
<term>Facteur de croissance végétal (génétique)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Famille multigénique (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Gènes dupliqués (MeSH)</term>
<term>Oryza (génétique)</term>
<term>Oryza (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Selaginellaceae (génétique)</term>
<term>Selaginellaceae (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Abscisic Acid</term>
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Abscisic Acid</term>
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Oryza</term>
<term>Populus</term>
<term>Selaginellaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Acide abscissique</term>
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Facteur de croissance végétal</term>
<term>Oryza</term>
<term>Populus</term>
<term>Selaginellaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Oryza</term>
<term>Populus</term>
<term>Selaginellaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide abscissique</term>
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Facteur de croissance végétal</term>
<term>Oryza</term>
<term>Populus</term>
<term>Selaginellaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Duplicate</term>
<term>Genes, Plant</term>
<term>Microarray Analysis</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse sur microréseau</term>
<term>Famille multigénique</term>
<term>Gènes de plante</term>
<term>Gènes dupliqués</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
<term>Transduction du signal</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Since plants cannot move to avoid stress, they have sophisticated acclimation mechanisms against a variety of abiotic stresses. The phytohormone abscisic acid (ABA) plays essential roles in abiotic stress tolerances in land plants. Therefore, it is interesting to address the evolutionary origins of ABA metabolism and its signaling pathways in land plants. Here, we focused on 48 ABA-related Arabidopsis thaliana genes with 11 protein functions, and generated 11 orthologous clusters of ABA-related genes from A. thaliana, Arabidopsis lyrata, Populus trichocarpa, Oryza sativa, Selaginella moellendorffii, and Physcomitrella patens. Phylogenetic analyses suggested that the common ancestor of these six species possessed most of the key protein functions of ABA-related genes. In two species (A. thaliana and O. sativa), duplicate genes related to ABA signaling pathways contribute to the expression variation in different organs or stress responses. In particular, there is significant expansion of gene families related to ABA in evolutionary periods associated with morphological divergence. Taken together, these results suggest that expansion of the gene families related to ABA signaling pathways may have contributed to the sophisticated stress tolerance mechanisms of higher land plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21626211</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1618-0860</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>124</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of plant research</Title>
<ISOAbbreviation>J Plant Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Origin and evolution of genes related to ABA metabolism and its signaling pathways.</ArticleTitle>
<Pagination>
<MedlinePgn>455-65</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10265-011-0431-0</ELocationID>
<Abstract>
<AbstractText>Since plants cannot move to avoid stress, they have sophisticated acclimation mechanisms against a variety of abiotic stresses. The phytohormone abscisic acid (ABA) plays essential roles in abiotic stress tolerances in land plants. Therefore, it is interesting to address the evolutionary origins of ABA metabolism and its signaling pathways in land plants. Here, we focused on 48 ABA-related Arabidopsis thaliana genes with 11 protein functions, and generated 11 orthologous clusters of ABA-related genes from A. thaliana, Arabidopsis lyrata, Populus trichocarpa, Oryza sativa, Selaginella moellendorffii, and Physcomitrella patens. Phylogenetic analyses suggested that the common ancestor of these six species possessed most of the key protein functions of ABA-related genes. In two species (A. thaliana and O. sativa), duplicate genes related to ABA signaling pathways contribute to the expression variation in different organs or stress responses. In particular, there is significant expansion of gene families related to ABA in evolutionary periods associated with morphological divergence. Taken together, these results suggest that expansion of the gene families related to ABA signaling pathways may have contributed to the sophisticated stress tolerance mechanisms of higher land plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hanada</LastName>
<ForeName>Kousuke</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Gene Discovery Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. kohanada@psc.riken.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hase</LastName>
<ForeName>Takeshi</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Toyoda</LastName>
<ForeName>Tetsuro</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shinozaki</LastName>
<ForeName>Kazuo</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Okamoto</LastName>
<ForeName>Masanori</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>05</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>J Plant Res</MedlineTA>
<NlmUniqueID>9887853</NlmUniqueID>
<ISSNLinking>0918-9440</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019068" MajorTopicYN="N">Bryopsida</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020131" MajorTopicYN="Y">Genes, Duplicate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046228" MajorTopicYN="N">Microarray Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032503" MajorTopicYN="N">Selaginellaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>10</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21626211</ArticleId>
<ArticleId IdType="doi">10.1007/s10265-011-0431-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Apr;151(4):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10101175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):1157-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15654095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3708-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9520431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Oct;24(10):2298-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17670808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2007 May;61(5):995-1016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17492956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Nov;45(11):1694-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jun;46(6):1032-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16805735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Aug 27;74(4):757-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8358795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 19;106(20):8380-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S15-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Dec 3;462(7273):660-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19924127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Sep;4(9):887-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19847119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17588-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Dec;5(12):e1000781</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20041196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Oct;19(10):3058-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Apr 7;23(7):1647-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15044947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000;7(3-4):429-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11108472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):993-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18715958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2361-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2009 Oct 29;1:409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20333209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Dec;18(12):609-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Nov;14(11):2723-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 May;7(5):499-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Aug 15;24(16):1695-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20713515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jan;7(1):41-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11804826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Jul;15(7):395-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20493758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(4):451-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19031047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):1085-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20488896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 May;8(5):213-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12758038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Feb;61(4):672-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19947981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:165-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:387-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18257711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:651-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Jul;50(7):1345-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19541597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1988 Mar;173(3):397-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2355-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Jun;70(3):327-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19266168</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hase, Takeshi" sort="Hase, Takeshi" uniqKey="Hase T" first="Takeshi" last="Hase">Takeshi Hase</name>
<name sortKey="Okamoto, Masanori" sort="Okamoto, Masanori" uniqKey="Okamoto M" first="Masanori" last="Okamoto">Masanori Okamoto</name>
<name sortKey="Shinozaki, Kazuo" sort="Shinozaki, Kazuo" uniqKey="Shinozaki K" first="Kazuo" last="Shinozaki">Kazuo Shinozaki</name>
<name sortKey="Toyoda, Tetsuro" sort="Toyoda, Tetsuro" uniqKey="Toyoda T" first="Tetsuro" last="Toyoda">Tetsuro Toyoda</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Hanada, Kousuke" sort="Hanada, Kousuke" uniqKey="Hanada K" first="Kousuke" last="Hanada">Kousuke Hanada</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21626211
   |texte=   Origin and evolution of genes related to ABA metabolism and its signaling pathways.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21626211" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020